
A Parameterizable Feedback FxLMS Architecture for FPGA
Platforms

ABSTRACT
In active noise control (ANC) systems the filtered-x least
mean squares (FxLMS) algorithm is the most widely used re-
duction algorithm. The feedback FxLMS can operate with-
out an external reference signal but has the disadvantage of
being very sensible to delays in the secondary path. As the
processing latency of the FxLMS itself adds to the secondary
path delay, it is critical to minimize the processing latency.
Large-scale ANC systems benefit from high order filters and
high sample rates. This combination is very computational
demanding. Specific hardware implementations can achieve
more complex filter configurations compared to software im-
plementations on general purpose processors, but are less
flexible to changes.
This paper presents a parameterizable hardware design im-
plemented in very-high-speed integrated circuit hardware
description language (VHDL) that can operate at different
bit widths and can be configured to optimize for high sam-
ple rates, long filter lengths or low hardware resource usage.
The design is able to provide a constant processing latency
of only 3 clock cycles that is independent from the filter
length. Various configurations of this filter design are syn-
thesized to a Xilinx Kintex7 XC7K325T field-programmable
gate array (FPGA) with filter lengths up to 131072 adaptive
coefficients or sample rates up to 4.5 MHz. The respective
hardware utilization is evaluated.

Keywords
Feedback FxLMS, Hardware Design, VHDL, FPGA

1. INTRODUCTION
Digitally implemented ANC applications mainly use the

FxLMS algorithm to calculate the driving signal for the anti-
noise sources due to its simplicity and robustness. The feed-
forward FxLMS algorithm needs a reference signal from the
noise source to be executed. In ANC applications where it is
impossible to get a reference signal from the noise source a
feedback ANC system can be used which estimates the ref-
erence signal via internal model control [10]. The stability of
the feedback algorithm is mainly affected by the correctness

of these models Ŝ(z) and the timespan between the change
of the noise at the error sensor and the respective change
at the anti-noise source. As a result short processing delays

This work was presented in part at the international symposium on Highly-
Efficient Accelerators and Reconfigurable Technologies (HEART2019) Na-
gasaki, JP, June 6–7, 2019.

are required. At the same time large-scale ANC applica-
tions aiming for offices or sleeping rooms require long filter
lengths for the respective internal model of the secondary
path.
Simulations in [13] showed that sample rates well above
48 kHz are beneficial to noise reduction in the audible spec-
trum and that with increasing sample rates it is also essen-
tial to further increase the static and adaptive filter length
accordingly. Since long filter lengths contradict with high
sample rates or low processing delays, a compromise needs
to be found. The optimal compromise for each ANC sce-
nario varies, thus the filter design also needs to be easily
adjustable. In time domain the filtering of a signal with a
finite impulse response (FIR) filter is a convolution, which
means a lot of multiply-accumulate (MAC) operations which
can be done in parallel. Thus FPGA are the ideal platforms
to implement low delay and high order feedback FxLMS fil-
ters enabling high sample rates.
The hardware design for the FPGA was implemented purely
using VHDL, although for the very common static FIR fil-
ter a variety of intellectual property (IP)-cores exist. The
choice to use VHDL was made to have a more fine-grained
control over the hardware design and to have a filter design
that is independent from proprietary software or a specific
hardware platform. The two largest FPGA producers Xil-
inx and Intel-Altera offer parameterizable IP-cores for static
FIR filters. Xilinx limits the data and coefficient bit widths
to 49 bit and the filter length to 2048 coefficients. Intel-
Altera limits the data and coefficient bit widths to 32 bit. An
IP-core for an adaptive filter using the least mean squares
(LMS) algorithm by Xilinx or Intel-Altera was not found
[21] [8].
A study of publications from the years 2005-2018 shows
other researches presented hardware implementations for
ANC applications using LMS or FxLMS filters. Many filter
architectures were found using either a fully sequential or
parallel approach for the arithmetic operations and thus are
quickly limited in their sample rate or filter lengths.
Most LMS filters show filter lengths between 4-256 and sam-
ple rates between 1-100 kHz [2, 4, 7, 9, 14, 19]. Bahoura et
al. presents a sequential architecture with a filter length of
1024 sampling at 50/60 Hz [3]. Parallel architectures achieve
high sample rates in the 10-100 MHz range, but the respec-
tive filter length of 4-64 is rather short [5, 6, 11, 17, 19].
Feedworward- and feedback-FxLMS architectures are found
in [12, 20] using 4-24 static and adaptive coefficients with
sample rates between 24-192 kHz. The architecture of Shi
et al. [18] is the only architecture of a FxLMS filter found



to provide a constant processing delay independent of the
filter length. They propose a systolic architecture of a feed-
forward FxLMS simulated in Matlab Simulink with differ-
ent filter parameters. This architecture has a constant low
processing delay and allows for very high sample rates. A
MAC-component is needed for each additional filter tap.
Rivera Benois et al. [15] present a feedforward and feedback
FxLMS in one design with 2048 adaptive and static filter
coefficients processing at a sample rate of 48 kHz. The com-
bination of filter length and sample rate suggests some sort
of mixed architecture, but cannot be further investigated as
the architecture of the feedback part was not provided. The
design is graphically programmed using Matlab Simulink
and Xilinx System Generator. Since this design provides
the highest found combination of filter taps and maximum
sample rate, a comparison regarding filter parameters and
sample rate is made in the results and evaluation.
All here mentioned designs are aimed at one specific ANC
problem and are not parameterizable.

2. ARCHITECTURE
The proposed architecture implements the feedback FxLMS

as it is described in [10] without any leakage factor or step
size normalization. It is implemented as a single input sin-
gle output system as shown in Fig.1. The area without gray

W (z)

LMS

DAC S(z)

Ŝ(z)

+

+

Ŝ(z)

d(n)

ADC

Digital Domain
y(n)

x′(n)

y′(n)

-

e(n)

x(n)

Figure 1: Block diagram of the feedback single input
single output ANC-system.

background shows the analog domain where the error sensor
measures the error signal e(n). The system S(z) represents
the signal transformation between the input of the digital-
to-analog converter (DAC) and the output of the analog-
to-digital converter (ADC). The error signal is composed of
the external disturbance signal d(n) and the signal of the
anti-noise source driven by the FxLMS output y(n). The
digital components are embedded in the gray area and rep-
resent the VHDL design. The VHDL design can be divided
into three parts. The LMS filter including the coefficient

adaption does the calculation of y(n). Both FIR filters Ŝ(z)
are merged into one component calculating x′(n) and y′(n).
The top-level component handles the communication with
the ADC, DAC and filters. Also it performs the calculation
of x(n) = e(n) − y′(n− 1). The architecture presented here
is an extended development of the design presented in [1].

2.1 The LMS Component
The LMS algorithm described in [10] with a filter length

of LLMS first does the convolution of the samples x and the

adaptive coefficients w

y(n) =

LLMS−1∑
l=0

wl(n) x(n− l) (1)

and then updates the filter coefficients

wl(n+1) = wl(n)−µx′(n−l)e(n), l = 0, 1, ..., LLMS−1. (2)

To enable a constant processing delay for the filter output,
the proposed implementation of the LMS does the same cal-
culations in a different order. When a new sample x(n)
arrives, the LMS component calculates

y(n) = w0(n) x(n) + ỹ(n). (3)

in one clock cycle. Concurrently the part of the convolution
of y(n) that is independent of the follow-up sample x(n+ 1)

ỹ(n+ 1) =

LLMS−1∑
l=1

wl(n+ 1) x(n+ 1 − l) (4)

is pre-calculated. Note the adaptive filter coefficients need
to be updated before as stated in eq. (2). This strategy for
a constant processing delay independent of the filter length
is proposed in [16] for a single static FIR filter.
The architecture of the LMS component is shown in Fig.2.
Please note that the LMS component as described here merges

Control Logic

x(0)

newSample

w(0)

validOut

y

y~

Coefficient-

Update 0x'(0)

e

Adder-

tree

subSum(0)

x(D-1) x'(D-1)

LMS-subblock 0

...
...

subSum(B-1)

x((B-1)D-1) x'((B-1)D-1)

LMS-subblock B-1

subSum(b)LMS-subblock b

x((b+1)D-1) x'((b+1)D-1)

x(bD-1) x'(bD-1)

Figure 2: The architecture of the LMS component.

the LMS update-algorithm and the filter W (z) into one
component. To achieve a mixed sequential and parallel ar-
chitecture, the LMS filter includes an array of components
named LMS-subblock. The LMS-subblocks split the filter
length LLMS into individual LMS units doing the calcula-
tions concurrently. Assuming a LMS-subblock count of B
means that the respective length of each LMS-subblock is
D = (LLMS − 1)/B. Hence each LMS-subblock with index
b = 0, 1, ..., B − 1 updates

wbD+d+1(n+ 1) = wbD+d+1(n) − µ e(n) x′(n− bD − d),

d = 0, 1, ..., D − 1 (5)



for its internal coefficients and calculates a sub-sum of

subsumb =

D−1∑
d=0

x(n− bD − d+ 1) wbD+d+1(n). (6)

Fig.3 shows the architecture of a LMS-subblock. The array

x(addrX)

x((b+1)D-1)

addrX

shiftEn

x(bD-1)

x'((b+1)D-1)

subSum(b)

Shift-Buffer

x

Shift-Buffer

x'

Multiply-

Accumulate

Coefficient-

Update
x'(addrXF)

addrXF

x'(bD-1)

w(addrRead)

enableWrite

addrRead

e

addrWrite

Figure 3: The architecture of a LMS-subblock.

of data samples x(n) and the filtered data samples x′(n)
are stored in block RAM based shift buffers. When new
samples arrive they are shifted into the shift buffers of the
first LMS-subblock. The oldest sample in the shift buffer is
then transferred into the shift buffer of the following LMS-
subblock. The shift buffers need two clock cycles to perform
the shifting of the samples and to output the first sample.
Note that the shift buffer of x′ is one sample behind the shift
buffer of x, because the coefficient-update term in eq. (5)
requires the filtered sample with index x′(n− bD− d) while
the sub-sum term in eq. (6) requires the unfiltered sample
with index x(n− bD − d+ 1).
Next the control logic initiates the sequential update of the
coefficients. At each clock cycle, a coefficient and the fil-
tered sample of the same index is loaded into the coefficient-
update component, see eq. (5). The coefficient update has
a two-stage pipeline calculating the filter coefficient step in
the first stage and subtract the step from the old coefficient
value in the second stage, see Fig.4. The coefficients are
loaded and stored in dual-port block RAM. The coefficient-
update component needs D + 2 clock cycles to update its
filter coefficients. To avoid an additional multiplication and

z-bit 

right shift

DP-BRAM

coefficients

enableWrite

addrRead

addrWrite

e

x'(n)

Figure 4: The coefficient-update component.

to save resources the step size µ is implemented in VHDL as
a right bit shift of z-bits. Hence the step size value µ = 2−z

in the presented design can only be set to a power of 2.
The MAC component also has a two-stage pipelined archi-
tecture, as shown in Fig.5, that first does the multiplication
of the sample and the coefficient. This product is added to
the register for the accumulating sum in the second stage,
see eq. (6).

The MAC component is processing the subsum concur-
rently to the coefficient-update component, but starts de-
layed to it once the first filter coefficient is updated. In

w(n)

x(n)

resetRegister

Figure 5: The multiply-accumulate component.

total the LMS-subblock uses two clock cycles for the shift
buffers, two clock cycles to begin the coefficient update, one
clock cycle to do the multiplication in the MAC component
and D clock cycles to accumulate the susbum. Hence the
LMS-subblock takes D+5 clock cycles to do the calculations
in (5) and (6). The addertree needs log2(B) clock cycles to
add the subsums to one sum. Therefore the LMS component
needs

NLMS =
LLMS − 1

B
+ log2(B) + 5. (7)

clock cycles to obtain the sum ỹ(n+1) and thus be ready to
process a new sample x(n+1). Note that the pre-calculation
of ỹ(n + 1) provides a constant low processing delay, but
does not decrease the minimal processing time between new
samples.

2.2 The FIR Component
The architecture of the static FIR filters (Ŝ(z)) uses a

very similar architecture compared to the LMS. Like the pro-
posed LMS the implementation of the FIR also uses a config-
urable array of parallel subblocks that sequentially accumu-
lates subsums of the filter output and a following pipelined
addertree. Each FIR-subblock contains one shift buffer for
the samples and a MAC component. The coefficient-update
component is replaced by read-only memory (ROM) for the
static filter coefficients s built in block RAM. Using the same
strategy as described for the LMS, the first FIR filter calcu-
lates the filter output

x′(n) = s0 x(n) + x̃′(n) (8)

in one clock cycle and the pre-calculation for the upcoming
sample

x̃′(n+ 1) =

LFIR−1∑
m=1

sm x(n+ 1 −m). (9)

The second FIR filter calculates y′(n) respectively. The two
instances of the FIR filter are further optimized to save hard-
ware resources and enable higher filter configurations. Both
FIR filters share one control logic component and the static
coefficient ROMs. The static coefficient ROM is possible to
share as both FIR filters emulate the same secondary path
and only the samples in the buffers vary. Both filters also
have the same filter length LFIR. As a consequence of us-
ing the same control logic, the FIR filters have to do their
calculations simultaneously.

2.3 The Top-Level Component
The internal signals of the FxLMS use fixed-point num-

ber representations of different precision depending on the
input/output (I/O) data word width. Every multiplication
and addition causes additional bits in the result. Therefore
the filter outputs of the underlying filters have higher bit
widths compared to their input signals. Within the top-level



component the signals x′(n), y(n) and y′(n) are saturated
and rounded to the original data bit width to save hardware
resources and to have constant bit widths for the signals in
the internal feedback path. If an overflow of guardbits is
detected, then the result is saturated to the minimum or
maximum value of the new, trimmed bit width. Else the
guardbits are truncated and the fractional part is rounded
to the new bit width.
When a new sample e(n) arrives at the ADC, the top-
level component first calculates x(n) and next signals the
LMS component to start. The raw signal y(n) is ready
after one clock cycle. A second clock cycle is needed to
have the trimmed signal y(n) ready and be transferred to
the DAC. Both FIR now start to calculate x′(n) and y′(n)
and have their results ready and trimmed after another two
clock cycles. The LMS and FIR filters now signal the top-
level component their busy state and do the respective pre-
calculations for a future sample. When the first static FIR
and the LMS are not busy, the top-level component is ready
to accept a new sample from the ADC for processing.

2.4 Parametrization of the Architecture
By using VHDL generics the I/O data word width, the

word width of the filter coefficients, the stepsize of the LMS,
the length of the adaptive filter and the level of calculations
done concurrently can be configured without modifying the
underlying VHDL code. For the FxLMS design the I/O
data word width can be set. The I/O data word width is
usually determined by the bit width of the ADC and DAC.
The word widths for the adaptive LMS coefficients and the
static FIR coefficients are also parameterizable. The filter
lengths LLMS and LFIR and the number of concurrent sub-
blocks BLMS and BFIR of the LMS and FIR can be set in-
dividually. Yet there are limitations when configuring the
filter design. To make sure the concurrent subblocks are of
equal length and the addertrees are symmetrical, the num-
ber of subblocks of both filter components must be set to a
power of 2. Thus the length of the filters can only be set
to L = 2n + 1 where n is a natural number. The generic
addertree is only synthesized where the LMS or static FIR
components have at least two subblocks. The stepsize µ for
the LMS also must be a power of 2.
Usually the optimal filter length and sample rate fs is given
by the physical circumstances in the ANC scenario. With a
given clock frequency fclk of the underlying hardware, the
number of concurrent subblocks needs to be chosen so that
eq. (10) and eq. (11) both are satisfied to provide enough
clock cycles for the pre-calculations of ỹ(n + 1), x̃′(n + 1)
and ỹ′(n+ 1) between samples.

fclk
fs

≥ LLMS − 1

BLMS

+ log2(BLMS) + 7 (10)

fclk
fs

≥ LFIR − 1

BFIR

+ log2(BFIR) + 3 (11)

The designs required clock cycles in eq. (10) result from
eq. (7) plus two additional clock cycles for the subtraction
x(n) = e(n) − y′(n − 1) and the trimming of y(n). To also
make sure the pre-sum of the FIR is calculated in time, eq.
(11) needs to be true as well. If the top-level component is
parameterized to ignore one equation, then samples will be
skipped.
Since the LMS and static FIR filters have a constant pro-

cessing delay it is recommended to use as few concurrent
subblocks as possible to satisfy eq. (11) and (10). Configur-
ing as few subblocks as possible saves hardware resources.

3. RESULTS AND EVALUATION
This section shows the hardware resources on the FPGA

used by this design in different configurations. Most ANC
systems found in the publication study from the introduc-
tion use a I/O data word width of 16 bit and static and
adaptive filter coefficients of 32 bit. To make the here pre-
sented results easily comparable, we decided to use these bit
widths in the following configurations. Also in [1] a prac-
tical application using these bit widths showed no loss in
noise reduction performance compared to double precision
floating point data types of the software implementation.
The LMS stepsize is chosen as µ = 2−17. The hardware
platform is a Xilinx Kintex7 XC7K325T FPGA clocked at
fclk = 100 MHz.
There are too many configuration parameters of the filter
design to present a complete evaluation of their impact on
hardware resources. Instead only a small set of six configu-
rations is selected as shown in table 1. The processing time
given in number of clocks of the FxLMS NFxLMS is calcu-
lated from eq. (10). The processing time of both static FIR
filters also given in number of clocks NFIR is calculated from
eq. (11). The maximum sample rate fsmax is the clock fre-
quency divided by the higher processing time and is then
rounded off to one kilohertz.
In [1] the performance increase of the hardware implemen-

Table 1: FxLMS configurations with processing de-
lays and maximum sample rate for fclk = 100 MHz.

C1 C2 C3 C4 C5 C6

LLMS 1025 1025 1025 131073 2049 65537
BLMS 1 128 8 256 128 32
LFIR 1025 1025 16385 1025 2049 131073
BFIR 1 128 128 2 128 64

NLMS 1031 22 138 527 30 2061
NFIR 1027 18 138 523 26 2057
fsmax [kHz] 96 4545 724 189 3333 48

tation on this platform compared to the software implemen-
tation was shown. The filter parameters in configuration C1
are similar with the one from the ANC-experiment M3 in [1].
The filter lengths differentiate by 1 due to the here included
strategy for the constant processing delay. The experiment
M3 was conducted at a sample rate of 40 kHz. With one
subblock set per filter component, the FxLMS configuration
of the VHDL design needs 1031 clocks to process a new sam-
ple. This results in a maximum sample rate of about 96 kHz.
Table 2 shows the used FPGA resources in the synthesis re-
sult for C1 and the resources available. The Xilinx Kintex7
XC7K325T has a total of 50950 slices within an array of
configurable logic blocks (CLB), further referred to as CLB
slices. Also available are 445 block RAM tiles and 840 digi-
tal signal processing (DSP) slices. Each block RAM tile can
be used as a block RAM with 36 kbit or can also be split into
two 18 kbit block RAMs. For further information about the
hardware, see [22].
As mentioned before the block RAM is used to store the
data samples and filter coefficients. The DSP slices are



Table 2: Synthesis results for the given configura-
tions.

Config. Type Used Util. %

C1
CLB Slices 286 0.56
Block RAM Tiles 4 0.90
DSPs 12 1.43

C2
CLB Slices 25290 49.64
Block RAM Tiles 320 71.91
DSPs 840 100.00

C3
CLB Slices 12931 25.38
Block RAM Tiles 200 44.94
DSPs 541 64.40

C4
CLB Slices 22816 44.78
Block RAM Tiles 387 86.97
DSPs 781 92.98

C5
CLB Slices 26687 52.38
Block RAM Tiles 320 71.91
DSPs 760 90.48

C6
CLB Slices 15377 30.18
Block RAM Tiles 322 72.36
DSPs 357 42.50

Available

CLB Slices 50950
Block RAM Tiles 445
DSPs 840

used for the multiplications. The CLB slices are used for
all other components such as summations, registers or state
machines. For C1 only a small fraction of the available hard-
ware is used.
The configuration C2 optimizes the filter dimensions of C1
for high sample rates. It implements the same filter lengths,
but uses as many concurrent subblocks as possible for this
FPGA. This configuration needs 22 clocks to process a sam-
ple and to be ready for a new one. This allows for sample
rates up to 4545 kHz. Table 2 shows that for C2 the num-
ber of available DSP slices sets a limit for the number of
concurrent subblocks used. Also the utilization of the other
resource types increases. Configuration C2 has the same
filter lengths as C1. Thus the amount of data samples and
filter coefficients stored in block RAM does not change. The
number of used block RAM tiles increases, because each sub-
block has to instantiate its own physical block RAM. Since
the subblock length is short in this configuration only a frac-
tion of each block RAM memory is used.
The static FIR filters model the secondary path S(z). In-
creasing the sample rate means that longer filters are nec-
essary to model the same secondary path with equal pre-
cision. Configuration C3 is also optimized for high sample
rates, but enlarges the static FIR filter lengths proportion-
ally compared to C1. A static FIR filter length of 16385 and
sample rate of 640 kHz means a 16 times increase. With a
maximum of 128 concurrent subblocks the static FIR filters
require 138 clocks between each sample to process. This
limits the executable sample rate to 724 kHz. The next pos-
sible step would mean an increase by 32 times compared
to configuration C1. Since we can not increase the number
of concurrent FIR-subblocks anymore, this would decrease

the executable sample rate to 362 kHz. Thus in a practical
application a sample rate up to 640 kHz must be chosen.
The number of concurrent LMS subblocks is set to satisfy
eq. (10) for this sample rate. Table 2 shows the hardware
utilization of C3.
Configuration C4 uses static FIR filter lengths of 1024 while
increasing the filter length of the adaptive LMS as far as
possible. As much as 131073 adaptive filter coefficients and
256 concurrent subblocks are possible to synthesize for the
LMS component. The FxLMS needs 527 clocks to process a
sample which results in a maximum sample rate of 189 kHz.
The LMS filter length cannot be further increased due to
limited memory. The number of concurrent subblocks can-
not be increased on the given platform due to the limited
number of DSP slices.
Configuration C5 and C6 are conducted to have a compari-
son to the design presented by Rivera Benois et al. in [15].
Since we do not know the architecture and its limitations,
we use their feedback part with 2048 static and adaptive
coefficients sampling with 48 kHz as a reference. Configura-
tion C5 uses the same filter lengths which results in a maxi-
mum sample rate of 3333 kHz. About 52 % of the CLB slices
and 72 % of the block RAM tiles are used. Configuration 6
tries to maximize the filter lengths while enabling a sample
rate of at least 48 kHz. Table 1 shows 65537 adaptive and
131073 static coefficients can be used at this sample rate.
Any further duplication of the filter lengths is prevented by
the limited number of Block RAM tiles of which 72 % are
utilized.

4. CONCLUSION
Large-scale ANC applications require long filter lengths

and benefit from high sample rates. As these requirements
contradict, a compromise needs to be found. This compro-
mise varies for each specific ANC application and therefore
demands for a fast and flexible design.
This paper presents a VHDL hardware implementation of a
feedback FxLMS aimed for these use-cases. This architec-
ture is parameterizable regarding filter length, sample rate,
data word width, stepsize and the degree of parallelism to
fully utilize the FPGA. Different configurations are synthe-
sized to a Xilinx XC7K325T FPGA to show possible filter
designs. The highest-order filter configuration uses 131073
static and 65537 adaptive coefficients and is able to sample
at 48 kHz. The fastest, presented configuration uses 1024
static and adaptive coefficients and is able to process sam-
ples at 4.5 MHz. All configurations provide a constant short
processing delay of three clock cycles, which is beneficial to
the stability of the feedback FxLMS.
Although the performance improvement over the software
implementation is good, the FxLMS algorithm gets unstable
for high filter lengths and sample rates. Using the experi-
mental setup described in [1], practical experiments with the
here proposed architecture show that the design is stable us-
ing filter lengths of 1024 at 40 kHz and below. Higher order
filters or higher sample rate let the filter become unstable
after a few minutes, before the maximum noise reduction
performance can be determined. Future work will integrate
the leaky LMS-algorithm and normalized LMS-algorithm to
improve stability.

5. REFERENCES



[1] Removed for blind review.

[2] C. Anghel, C. Paleologu, J. Benesty, and S. Ciochina.
Fpga implementation of an acoustic echo canceller
using a vss-nlms algorithm. In International
Symposium on Signals, Circuits and Systems, 2009,
pages 1–4. IEEE.

[3] M. Bahoura and H. Ezzaidi. FPGA-implementation of
a sequential adaptive noise canceller using xilinx
system generator. In Proceedings of the International
Conference on Microelectronics (ICM), pages 213–216.

[4] S. G. Boroujeny and M. Eshghi. FPGA
implementation of a modular active noise control
system. In 2010 18th Iranian Conference on Electrical
Engineering. IEEE.

[5] A. Di Stefano, A. Scaglione, and C. Giaconia. Efficient
fpga implementation of an adaptive noise canceller. In
Proceedings of Seventh International Workshop on
Computer Architecture for Machine Perception.

[6] P. Goel and M. Chandra. Vlsi implementations of
retimed high speed adaptive filter structures for
speech enhancement. 24(12):4799–4806. cited By 0.

[7] I. Homana, I. Muresan, M. Topa, and C. Contan.
Fpga implementation of an acoustic echo canceller.

[8] Intel Corp. FIR II IP Core - User Guide, 5 2016.

[9] A. Jalali, S. Gholami Boroujeny, and M. Eshghi.
Design and implementation of a fast active noise
control system on fpga. In 2007 Mediterranean
Conference on Control and Automation (MED 2007).

[10] S. M. Kuo and D. Morgan. Active noise control
systems: algorithms and DSP implementations. John
Wiley & Sons, Inc., 1995.

[11] T. Lan and J. Zhang. Fpga implementation of an
adaptive noise canceller. In 2008 International
Symposiums on Information Processing, pages
553–558. IEEE.

[12] A. Leva and L. Piroddi. FPGA-based implementation
of high-speed active noise and vibration controllers.
19(8):798–808.

[13] M. Lorenzen, J. Hanselka, and D. Sachau. Simulative
study on the effect of the increase of the sample rate
of a feedback active noise control system. In
INTER-NOISE and NOISE-CON Congress and
Conference Proceedings, 2018.

[14] M. Pavuluri and B. Prasanthi. Low latency area
efficient adaptive lms filter using fpga.
2018-January:114–116. cited By 0.

[15] P. Rivera Benois, P. Nowak, and U. Zölzer. Evaluation
of a decoupled feedforward-feedback hybrid structure
for active noise control headphones in a multi-source
environment. In INTER-NOISE and NOISE-CON
Congress and Conference Proceedings, 2017.

[16] P. Rivera Benois, P. Nowak, U. Zölzer, M. Eckert, and
B. Klauer. Low-latency fir filter structures targeting
fpga platforms. In Proc. of HEART 2018 -
International Symposium on
Highly-Efficient-Accelerators and Reconfigurable
Technologies, 2018.

[17] C. Safarian, T. Ogunfunmi, and W. J. Kozacky. Fpga
implementation of lms-based fir adaptive filter for real
time digital signal processing applications. In 2015
IEEE International Conference on Digital Signal

Processing (DSP), pages 1251–1255. IEEE.

[18] D. Shi, C. Shi, and W. Gan. A systolic fxlms structure
for implementation of feedforward active noise control
on fpga. In 2016 Asia-Pacific Signal and Information
Processing Association Annual Summit and
Conference (APSIPA), pages 1–6, Dec 2016.

[19] J. Shobba, Y. Murali, and M. Tech. Efficient
fixed-point dlms adaptive filter implementation on
fpga. (3.6):359–367.

[20] H.-S. Vu and K.-H. Chen. A high-performance
feedback fxlms active noise cancellation vlsi circuit
design for in-ear headphones. Circuits, Systems, and
Signal Processing, pages 1–19, 2017.

[21] Xilinx, Inc. FIR Compiler v7.2 - LogiCORE IP
Product Guide, 11 2015.

[22] Xilinx, Inc. 7 Series FPGAs Data Sheet: Overview, 2
2018. Rev. 2.6.


