###########################################################################

=head1 NAME

Danga::Socket - Event-driven async IO class

=head1 SYNOPSIS

  use base ('Danga::Socket');

=head1 DESCRIPTION

This is an abstract base class which provides the basic framework for
event-driven asynchronous IO.

=cut

###########################################################################

package Danga::Socket;
use strict;

use vars qw{$VERSION};
$VERSION = do { my @r = (q$Revision: 1.4 $ =~ /\d+/g); sprintf "%d."."%02d" x $#r, @r };

use fields qw(sock fd write_buf write_buf_offset write_buf_size
              read_push_back post_loop_callback
			  peer_ip
              closed event_watch debug_level);

use Errno qw(EINPROGRESS EWOULDBLOCK EISCONN
             EPIPE EAGAIN EBADF ECONNRESET);

use Socket qw(IPPROTO_TCP);
use Carp qw{croak confess};
use POSIX ();

use constant TCP_CORK => 3; # FIXME: not hard-coded (Linux-specific too)

use constant DebugLevel => 0;

# for epoll definitions:
our $HAVE_SYSCALL_PH = eval { require 'syscall.ph'; 1 } || eval { require 'sys/syscall.ph'; 1 };
our $HAVE_KQUEUE = eval { require IO::KQueue; 1 };

# Explicitly define the poll constants, as either one set or the other won't be
# loaded. They're also badly implemented in IO::Epoll:
# The IO::Epoll module is buggy in that it doesn't export constants efficiently
# (at least as of 0.01), so doing constants ourselves saves 13% of the user CPU
# time
use constant EPOLLIN       => 1;
use constant EPOLLOUT      => 4;
use constant EPOLLERR      => 8;
use constant EPOLLHUP      => 16;
use constant EPOLL_CTL_ADD => 1;
use constant EPOLL_CTL_DEL => 2;
use constant EPOLL_CTL_MOD => 3;

use constant POLLIN        => 1;
use constant POLLOUT       => 4;
use constant POLLERR       => 8;
use constant POLLHUP       => 16;
use constant POLLNVAL      => 32;

# keep track of active clients
our (
     $DoneInit,                  # if we've done the one-time module init yet
     $TryEpoll,                  # Whether epoll should be attempted to be used.
     $HaveEpoll,                 # Flag -- is epoll available?  initially undefined.
     $HaveKQueue,
     %DescriptorMap,             # fd (num) -> Danga::Socket object
     %PushBackSet,               # fd (num) -> Danga::Socket (fds with pushed back read data)
     $Epoll,                     # Global epoll fd (for epoll mode only)
     $KQueue,                    # Global kqueue fd (for kqueue mode only)
     @ToClose,                   # sockets to close when event loop is done
     %OtherFds,                  # A hash of "other" (non-Danga::Socket) file
                                 # descriptors for the event loop to track.
     $PostLoopCallback,          # subref to call at the end of each loop, if defined
     %PLCMap,                    # fd (num) -> PostLoopCallback
     @Timers,                    # timers
     );

Reset();

#####################################################################
### C L A S S   M E T H O D S
#####################################################################

### (CLASS) METHOD: Reset()
### Reset all state
sub Reset {
    %DescriptorMap = ();
    %PushBackSet = ();
    @ToClose = ();
    %OtherFds = ();
    $PostLoopCallback = undef;
    %PLCMap = ();
    @Timers = ();
}

### (CLASS) METHOD: HaveEpoll()
### Returns a true value if this class will use IO::Epoll for async IO.
sub HaveEpoll { $HaveEpoll };

### (CLASS) METHOD: WatchedSockets()
### Returns the number of file descriptors which are registered with the global
### poll object.
sub WatchedSockets {
    return scalar keys %DescriptorMap;
}
*watched_sockets = *WatchedSockets;


### (CLASS) METHOD: ToClose()
### Return the list of sockets that are awaiting close() at the end of the
### current event loop.
sub ToClose { return @ToClose; }


### (CLASS) METHOD: OtherFds( [%fdmap] )
### Get/set the hash of file descriptors that need processing in parallel with
### the registered Danga::Socket objects.
sub OtherFds {
    my $class = shift;
    if ( @_ ) { %OtherFds = (%OtherFds, @_) }
    return wantarray ? %OtherFds : \%OtherFds;
}

sub AddTimer {
    my $class = shift;
    my ($secs, $coderef) = @_;
    my $timeout = time + $secs;
    
    if (!@Timers || ($timeout >= $Timers[-1][0])) {
        push @Timers, [$timeout, $coderef];
        return;
    }
    
    # Now where do we insert...
    for (my $i = 0; $i < @Timers; $i++) {
        if ($Timers[$i][0] > $timeout) {
            splice(@Timers, $i, 0, [$timeout, $coderef]);
            return;
        }
    }
    
    die "Shouldn't get here spank matt.";
}

### (CLASS) METHOD: DescriptorMap()
### Get the hash of Danga::Socket objects keyed by the file descriptor they are
### wrapping.
sub DescriptorMap {
    return wantarray ? %DescriptorMap : \%DescriptorMap;
}
*descriptor_map = *DescriptorMap;
*get_sock_ref = *DescriptorMap;

sub init_poller
{
    return if $DoneInit;
    $DoneInit = 1;
    
    if ($HAVE_KQUEUE) {
        $KQueue = IO::KQueue->new();
        $HaveKQueue = $KQueue >= 0;
        if ($HaveKQueue) {
            *EventLoop = *KQueueEventLoop;
        }
    }
    elsif ($TryEpoll) {
        $Epoll = eval { epoll_create(1024); };
        $HaveEpoll = defined $Epoll && $Epoll >= 0;
        if ($HaveEpoll) {
            *EventLoop = *EpollEventLoop;
        }
    }
    
    if (!$HaveEpoll && !$HaveKQueue) {
        require IO::Poll;
        *EventLoop = *PollEventLoop;
    }
}

### FUNCTION: EventLoop()
### Start processing IO events.
sub EventLoop {
    my $class = shift;

    init_poller();

    if ($HaveEpoll) {
        EpollEventLoop($class);
    } elsif ($HaveKQueue) {
        KQueueEventLoop($class);
    } else {
        PollEventLoop($class);
    }
}

### The kqueue-based event loop. Gets installed as EventLoop if IO::KQueue works
### okay.
sub KQueueEventLoop {
    my $class = shift;
    
    foreach my $fd (keys %OtherFds) {
        $KQueue->EV_SET($fd, IO::KQueue::EVFILT_READ(), IO::KQueue::EV_ADD());
    }
    
    while (1) {
        my $now = time;
        # Run expired timers
        while (@Timers && $Timers[0][0] <= $now) {
            my $to_run = shift(@Timers);
            $to_run->[1]->($now);
        }
        
        # Get next timeout
        my $timeout = @Timers ? ($Timers[0][0] - $now) : 1;
        # print STDERR "kevent($timeout)\n";
        my @ret = $KQueue->kevent($timeout * 1000);
        
        foreach my $kev (@ret) {
            my ($fd, $filter, $flags, $fflags) = @$kev;
            
            my Danga::Socket $pob = $DescriptorMap{$fd};
            
            # prioritise OtherFds first - likely to be accept() socks (?)
            if (!$pob) {
                if (my $code = $OtherFds{$fd}) {
                    $code->($filter);
                }
                else {
                    print STDERR "kevent() returned fd $fd for which we have no mapping.  removing.\n";
                    POSIX::close($fd); # close deletes the kevent entry
                }
                next;
            }
            
            DebugLevel >= 1 && $class->DebugMsg("Event: fd=%d (%s), flags=%d \@ %s\n",
                                                        $fd, ref($pob), $flags, time);
            
            $pob->event_read  if $filter == IO::KQueue::EVFILT_READ()  && !$pob->{closed};
            $pob->event_write if $filter == IO::KQueue::EVFILT_WRITE() && !$pob->{closed};
            if ($flags ==  IO::KQueue::EV_EOF() && !$pob->{closed}) {
                if ($fflags) {
                    $pob->event_err;
                } else {
                    $pob->event_hup;
                }
            }
        }
        
        return unless PostEventLoop();
    }
    
    exit(0);
}

### The epoll-based event loop. Gets installed as EventLoop if IO::Epoll loads
### okay.
sub EpollEventLoop {
    my $class = shift;

    foreach my $fd ( keys %OtherFds ) {
        epoll_ctl($Epoll, EPOLL_CTL_ADD, $fd, EPOLLIN);
    }

    while (1) {
        my $now = time;
        # Run expired timers
        while (@Timers && $Timers[0][0] <= $now) {
            my $to_run = shift(@Timers);
            $to_run->[1]->($now);
        }
        
        # Get next timeout
        my $timeout = @Timers ? ($Timers[0][0] - $now) : 1;
        
        my @events;
        my $i;
        my $evcount = epoll_wait($Epoll, 1000, $timeout * 1000, \@events);
        
      EVENT:
        for ($i=0; $i<$evcount; $i++) {
            my $ev = $events[$i];

            # it's possible epoll_wait returned many events, including some at the end
            # that ones in the front triggered unregister-interest actions.  if we
            # can't find the %sock entry, it's because we're no longer interested
            # in that event.
            my Danga::Socket $pob = $DescriptorMap{$ev->[0]};
            my $code;
            my $state = $ev->[1];

            # if we didn't find a Perlbal::Socket subclass for that fd, try other
            # pseudo-registered (above) fds.
            if (! $pob) {
                if (my $code = $OtherFds{$ev->[0]}) {
                    $code->($state);
                }
                else {
                    my $fd = $ev->[0];
                    print STDERR "epoll() returned fd $fd w/ state $state for which we have no mapping.  removing.\n";
                    POSIX::close($fd);
                    epoll_ctl($Epoll, EPOLL_CTL_DEL, $fd, 0);
                }
                next;
            }

            DebugLevel >= 1 && $class->DebugMsg("Event: fd=%d (%s), state=%d \@ %s\n",
                                                $ev->[0], ref($pob), $ev->[1], time);

            $pob->event_read   if $state & EPOLLIN && ! $pob->{closed};
            $pob->event_write  if $state & EPOLLOUT && ! $pob->{closed};
            $pob->event_err    if $state & EPOLLERR && ! $pob->{closed};
            $pob->event_hup    if $state & EPOLLHUP && ! $pob->{closed};
        }
                
        return unless PostEventLoop();
    }
    exit 0;
}

### The fallback IO::Poll-based event loop. Gets installed as EventLoop if
### IO::Epoll fails to load.
sub PollEventLoop {
    my $class = shift;

    my Danga::Socket $pob;

    while (1) {
        my $now = time;
        # Run expired timers
        while (@Timers && $Timers[0][0] <= $now) {
            my $to_run = shift(@Timers);
            $to_run->[1]->($now);
        }
        
        # Get next timeout
        my $timeout = @Timers ? ($Timers[0][0] - $now) : 1;
        
        # the following sets up @poll as a series of ($poll,$event_mask)
        # items, then uses IO::Poll::_poll, implemented in XS, which
        # modifies the array in place with the even elements being
        # replaced with the event masks that occured.
        my @poll;
        foreach my $fd ( keys %OtherFds ) {
            push @poll, $fd, POLLIN;
        }
        foreach my $fd ( keys %DescriptorMap ) {
            my Danga::Socket $sock = $DescriptorMap{$fd};
            push @poll, $fd, $sock->{event_watch};
        }
        return 0 unless @poll;
        
        # print STDERR "Poll for $timeout secs\n";
        my $count = IO::Poll::_poll($timeout * 1000, @poll);

        # Fetch handles with read events
        while (@poll) {
            my ($fd, $state) = splice(@poll, 0, 2);
            next unless $state;

            $pob = $DescriptorMap{$fd};

            if ( !$pob && (my $code = $OtherFds{$fd}) ) {
                $code->($state);
                next;
            }

            $pob->event_read   if $state & POLLIN && ! $pob->{closed};
            $pob->event_write  if $state & POLLOUT && ! $pob->{closed};
            $pob->event_err    if $state & POLLERR && ! $pob->{closed};
            $pob->event_hup    if $state & POLLHUP && ! $pob->{closed};
        }

        return unless PostEventLoop();
    }

    exit 0;
}

## PostEventLoop is called at the end of the event loop to process things
#  like close() calls.
sub PostEventLoop {
    # fire read events for objects with pushed-back read data
    my $loop = 1;
    while ($loop) {
        $loop = 0;
        foreach my $fd (keys %PushBackSet) {
            my Danga::Socket $pob = $PushBackSet{$fd};
            next unless (! $pob->{closed} &&
                         $pob->{event_watch} & POLLIN);
            $loop = 1;
            $pob->event_read;
        }
    }

    # now we can close sockets that wanted to close during our event processing.
    # (we didn't want to close them during the loop, as we didn't want fd numbers
    #  being reused and confused during the event loop)
    foreach my $f (@ToClose) {
        close($f);
    }
    @ToClose = ();

    # now we're at the very end, call per-connection callbacks if defined
    my $ret = 1; # use $ret so's to not starve some FDs; return 0 if any PLCs return 0
    for my $plc (values %PLCMap) {
        $ret &&= $plc->(\%DescriptorMap, \%OtherFds);
    }

    # now we're at the very end, call global callback if defined
    if (defined $PostLoopCallback) {
        $ret &&= $PostLoopCallback->(\%DescriptorMap, \%OtherFds);
    }
    return $ret;
}


### (CLASS) METHOD: DebugMsg( $format, @args )
### Print the debugging message specified by the C<sprintf>-style I<format> and
### I<args>
sub DebugMsg {
    my ( $class, $fmt, @args ) = @_;
    chomp $fmt;
    printf STDERR ">>> $fmt\n", @args;
}


### METHOD: new( $socket )
### Create a new Danga::Socket object for the given I<socket> which will react
### to events on it during the C<wait_loop>.
sub new {
    my Danga::Socket $self = shift;
    $self = fields::new($self) unless ref $self;

    my $sock = shift;

    $self->{sock}        = $sock;
    my $fd = fileno($sock);
    $self->{fd}          = $fd;
    $self->{write_buf}      = [];
    $self->{write_buf_offset} = 0;
    $self->{write_buf_size} = 0;
    $self->{closed} = 0;
    $self->{read_push_back} = [];
    $self->{post_loop_callback} = undef;

    $self->{event_watch} = POLLERR|POLLHUP|POLLNVAL;

    init_poller();

    if ($HaveEpoll) {
        epoll_ctl($Epoll, EPOLL_CTL_ADD, $fd, $self->{event_watch})
            and die "couldn't add epoll watch for $fd\n";
    }
    elsif ($HaveKQueue) {
        # Add them to the queue but disabled for now
        $KQueue->EV_SET($fd, IO::KQueue::EVFILT_READ(),
                        IO::KQueue::EV_ADD() | IO::KQueue::EV_DISABLE());
        $KQueue->EV_SET($fd, IO::KQueue::EVFILT_WRITE(),
                        IO::KQueue::EV_ADD() | IO::KQueue::EV_DISABLE());
    }

    $DescriptorMap{$fd} = $self;
    return $self;
}



#####################################################################
### I N S T A N C E   M E T H O D S
#####################################################################

### METHOD: tcp_cork( $boolean )
### Turn TCP_CORK on or off depending on the value of I<boolean>.
sub tcp_cork {
    my Danga::Socket $self = shift;
    my $val = shift;

    # FIXME: Linux-specific.
    setsockopt($self->{sock}, IPPROTO_TCP, TCP_CORK,
           pack("l", $val ? 1 : 0))   || die "setsockopt: $!";
}

### METHOD: close( [$reason] )
### Close the socket. The I<reason> argument will be used in debugging messages.
sub close {
    my Danga::Socket $self = shift;
    my $reason = shift || "";

    my $fd = $self->{fd};
    my $sock = $self->{sock};
    $self->{closed} = 1;

    # we need to flush our write buffer, as there may
    # be self-referential closures (sub { $client->close })
    # preventing the object from being destroyed
    $self->{write_buf} = [];

    if (DebugLevel) {
        my ($pkg, $filename, $line) = caller;
        print STDERR "Closing \#$fd due to $pkg/$filename/$line ($reason)\n";
    }

    if ($HaveEpoll) {
        if (epoll_ctl($Epoll, EPOLL_CTL_DEL, $fd, $self->{event_watch}) == 0) {
            DebugLevel >= 1 && $self->debugmsg("Client %d disconnected.\n", $fd);
        } else {
            DebugLevel >= 1 && $self->debugmsg("poll->remove failed on fd %d\n", $fd);
        }
    }

    delete $PLCMap{$fd};
    delete $DescriptorMap{$fd};
    delete $PushBackSet{$fd};

    # defer closing the actual socket until the event loop is done
    # processing this round of events.  (otherwise we might reuse fds)
    push @ToClose, $sock;

    return 0;
}



### METHOD: sock()
### Returns the underlying IO::Handle for the object.
sub sock {
    my Danga::Socket $self = shift;
    return $self->{sock};
}


### METHOD: write( $data )
### Write the specified data to the underlying handle.  I<data> may be scalar,
### scalar ref, code ref (to run when there), or undef just to kick-start.
### Returns 1 if writes all went through, or 0 if there are writes in queue. If
### it returns 1, caller should stop waiting for 'writable' events)
sub write {
    my Danga::Socket $self;
    my $data;
    ($self, $data) = @_;

    # nobody should be writing to closed sockets, but caller code can
    # do two writes within an event, have the first fail and
    # disconnect the other side (whose destructor then closes the
    # calling object, but it's still in a method), and then the
    # now-dead object does its second write.  that is this case.  we
    # just lie and say it worked.  it'll be dead soon and won't be
    # hurt by this lie.
    return 1 if $self->{closed};

    my $bref;

    # just queue data if there's already a wait
    my $need_queue;

    if (defined $data) {
        $bref = ref $data ? $data : \$data;
        if ($self->{write_buf_size}) {
            push @{$self->{write_buf}}, $bref;
            $self->{write_buf_size} += ref $bref eq "SCALAR" ? length($$bref) : 1;
            return 0;
        }

        # this flag says we're bypassing the queue system, knowing we're the
        # only outstanding write, and hoping we don't ever need to use it.
        # if so later, though, we'll need to queue
        $need_queue = 1;
    }

  WRITE:
    while (1) {
        return 1 unless $bref ||= $self->{write_buf}[0];

        my $len;
        eval {
            $len = length($$bref); # this will die if $bref is a code ref, caught below
        };
        if ($@) {
            if (ref $bref eq "CODE") {
                unless ($need_queue) {
                    $self->{write_buf_size}--; # code refs are worth 1
                    shift @{$self->{write_buf}};
                }
                $bref->();
                undef $bref;
                next WRITE;
            }
            die "Write error: $@ <$bref>";
        }

        my $to_write = $len - $self->{write_buf_offset};
        my $written = syswrite($self->{sock}, $$bref, $to_write, $self->{write_buf_offset});

        if (! defined $written) {
            if ($! == EPIPE) {
                return $self->close("EPIPE");
            } elsif ($! == EAGAIN) {
                # since connection has stuff to write, it should now be
                # interested in pending writes:
                if ($need_queue) {
                    push @{$self->{write_buf}}, $bref;
                    $self->{write_buf_size} += $len;
                }
                $self->watch_write(1);
                return 0;
            } elsif ($! == ECONNRESET) {
                return $self->close("ECONNRESET");
            }

            DebugLevel >= 1 && $self->debugmsg("Closing connection ($self) due to write error: $!\n");

            return $self->close("write_error");
        } elsif ($written != $to_write) {
            DebugLevel >= 2 && $self->debugmsg("Wrote PARTIAL %d bytes to %d",
                                               $written, $self->{fd});
            if ($need_queue) {
                push @{$self->{write_buf}}, $bref;
                $self->{write_buf_size} += $len;
            }
            # since connection has stuff to write, it should now be
            # interested in pending writes:
            $self->{write_buf_offset} += $written;
            $self->{write_buf_size} -= $written;
            $self->watch_write(1);
            return 0;
        } elsif ($written == $to_write) {
            DebugLevel >= 2 && $self->debugmsg("Wrote ALL %d bytes to %d (nq=%d)",
                                               $written, $self->{fd}, $need_queue);
            $self->{write_buf_offset} = 0;

            # this was our only write, so we can return immediately
            # since we avoided incrementing the buffer size or
            # putting it in the buffer.  we also know there
            # can't be anything else to write.
            return 1 if $need_queue;

            $self->{write_buf_size} -= $written;
            shift @{$self->{write_buf}};
            undef $bref;
            next WRITE;
        }
    }
}

### METHOD: push_back_read( $buf )
### Push back I<buf> (a scalar or scalarref) into the read stream
sub push_back_read {
    my Danga::Socket $self = shift;
    my $buf = shift;
    push @{$self->{read_push_back}}, ref $buf ? $buf : \$buf;
    $PushBackSet{$self->{fd}} = $self;
}

### METHOD: shift_back_read( $buf )
### Shift back I<buf> (a scalar or scalarref) into the read stream
### Use this instead of push_back_read() when you need to unread
### something you just read.
sub shift_back_read {
    my Danga::Socket $self = shift;
    my $buf = shift;
    unshift @{$self->{read_push_back}}, ref $buf ? $buf : \$buf;
    $PushBackSet{$self->{fd}} = $self;
}

### METHOD: read( $bytecount )
### Read at most I<bytecount> bytes from the underlying handle; returns scalar
### ref on read, or undef on connection closed.
sub read {
    my Danga::Socket $self = shift;
    my $bytes = shift;
    my $buf;
    my $sock = $self->{sock};

    if (@{$self->{read_push_back}}) {
        $buf = shift @{$self->{read_push_back}};
        my $len = length($$buf);
        if ($len <= $buf) {
            unless (@{$self->{read_push_back}}) {
                delete $PushBackSet{$self->{fd}};
            }
            return $buf;
        } else {
            # if the pushed back read is too big, we have to split it
            my $overflow = substr($$buf, $bytes);
            $buf = substr($$buf, 0, $bytes);
            unshift @{$self->{read_push_back}}, \$overflow,
            return \$buf;
        }
    }

    my $res = sysread($sock, $buf, $bytes, 0);
    DebugLevel >= 2 && $self->debugmsg("sysread = %d; \$! = %d", $res, $!);

    if (! $res && $! != EWOULDBLOCK) {
        # catches 0=conn closed or undef=error
        DebugLevel >= 2 && $self->debugmsg("Fd \#%d read hit the end of the road.", $self->{fd});
        return undef;
    }

    return \$buf;
}


### (VIRTUAL) METHOD: event_read()
### Readable event handler. Concrete deriviatives of Danga::Socket should
### provide an implementation of this. The default implementation will die if
### called.
sub event_read  { die "Base class event_read called for $_[0]\n"; }


### (VIRTUAL) METHOD: event_err()
### Error event handler. Concrete deriviatives of Danga::Socket should
### provide an implementation of this. The default implementation will die if
### called.
sub event_err   { die "Base class event_err called for $_[0]\n"; }


### (VIRTUAL) METHOD: event_hup()
### 'Hangup' event handler. Concrete deriviatives of Danga::Socket should
### provide an implementation of this. The default implementation will die if
### called.
sub event_hup   { die "Base class event_hup called for $_[0]\n"; }


### METHOD: event_write()
### Writable event handler. Concrete deriviatives of Danga::Socket may wish to
### provide an implementation of this. The default implementation calls
### C<write()> with an C<undef>.
sub event_write {
    my $self = shift;
    $self->write(undef);
}


### METHOD: watch_read( $boolean )
### Turn 'readable' event notification on or off.
sub watch_read {
    my Danga::Socket $self = shift;
    return if $self->{closed};

    my $val = shift;
    my $event = $self->{event_watch};
    
    $event &= ~POLLIN if ! $val;
    $event |=  POLLIN if   $val;
    
    # If it changed, set it
    if ($event != $self->{event_watch}) {
        if ($HaveKQueue) {
            $KQueue->EV_SET($self->{fd}, IO::KQueue::EVFILT_READ(),
                            $val ? IO::KQueue::EV_ENABLE() : IO::KQueue::EV_DISABLE());
        }
        elsif ($HaveEpoll) {
            epoll_ctl($Epoll, EPOLL_CTL_MOD, $self->{fd}, $event)
                and print STDERR "couldn't modify epoll settings for $self->{fd} " .
                "($self) from $self->{event_watch} -> $event\n";
        }
        $self->{event_watch} = $event;
    }
}

### METHOD: watch_read( $boolean )
### Turn 'writable' event notification on or off.
sub watch_write {
    my Danga::Socket $self = shift;
    return if $self->{closed};

    my $val = shift;
    my $event = $self->{event_watch};
    
    $event &= ~POLLOUT if ! $val;
    $event |=  POLLOUT if   $val;

    # If it changed, set it
    if ($event != $self->{event_watch}) {
        if ($HaveKQueue) {
            $KQueue->EV_SET($self->{fd}, IO::KQueue::EVFILT_WRITE(),
                            $val ? IO::KQueue::EV_ENABLE() : IO::KQueue::EV_DISABLE());
        }
        elsif ($HaveEpoll) {
            epoll_ctl($Epoll, EPOLL_CTL_MOD, $self->{fd}, $event)
                and print STDERR "couldn't modify epoll settings for $self->{fd} " .
                "($self) from $self->{event_watch} -> $event\n";
        }
        $self->{event_watch} = $event;
    }
}


### METHOD: debugmsg( $format, @args )
### Print the debugging message specified by the C<sprintf>-style I<format> and
### I<args> if the object's C<debug_level> is greater than or equal to the given
### I<level>.
sub debugmsg {
    my ( $self, $fmt, @args ) = @_;
    confess "Not an object" unless ref $self;

    chomp $fmt;
    printf STDERR ">>> $fmt\n", @args;
}


### METHOD: peer_ip_string()
### Returns the string describing the peer's IP
sub peer_ip_string {
    my Danga::Socket $self = shift;
	return $self->{peer_ip} if defined $self->{peer_ip};
    my $pn = getpeername($self->{sock}) or return undef;
    my ($port, $iaddr) = Socket::sockaddr_in($pn);
    my $r = Socket::inet_ntoa($iaddr);
	$self->{peer_ip} = $r;
    return $r;
}

### METHOD: peer_addr_string()
### Returns the string describing the peer for the socket which underlies this
### object in form "ip:port"
sub peer_addr_string {
    my Danga::Socket $self = shift;
    my $pn = getpeername($self->{sock}) or return undef;
    my ($port, $iaddr) = Socket::sockaddr_in($pn);
    return Socket::inet_ntoa($iaddr) . ":$port";
}

### METHOD: as_string()
### Returns a string describing this socket.
sub as_string {
    my Danga::Socket $self = shift;
    my $ret = ref($self) . ": " . ($self->{closed} ? "closed" : "open");
    my $peer = $self->peer_addr_string;
    if ($peer) {
        $ret .= " to " . $self->peer_addr_string;
    }
    return $ret;
}

### CLASS METHOD: SetPostLoopCallback
### Sets post loop callback function.  Pass a subref and it will be
### called every time the event loop finishes.  Return 1 from the sub
### to make the loop continue, else it will exit.  The function will
### be passed two parameters: \%DescriptorMap, \%OtherFds.
sub SetPostLoopCallback {
    my ($class, $ref) = @_;
    if(ref $class) {
        my Danga::Socket $self = $class;
        if( defined $ref && ref $ref eq 'CODE' ) {
            $PLCMap{$self->{fd}} = $ref;
        }
        else {
            delete $PLCMap{$self->{fd}};
        }
    }
    else {
        $PostLoopCallback = (defined $ref && ref $ref eq 'CODE') ? $ref : undef;
    }
}

sub DESTROY {
    my Danga::Socket $self = shift;
    $self->close() if !$self->{closed};
}

#####################################################################
### U T I L I T Y   F U N C T I O N S
#####################################################################

our ($SYS_epoll_create, $SYS_epoll_ctl, $SYS_epoll_wait);

if ($^O eq "linux") {
    my ($sysname, $nodename, $release, $version, $machine) = POSIX::uname();

    # whether the machine requires 64-bit numbers to be on 8-byte
    # boundaries.
    my $u64_mod_8 = 0;

    if ($machine =~ m/^i[3456]86$/) {
        $SYS_epoll_create = 254;
        $SYS_epoll_ctl    = 255;
        $SYS_epoll_wait   = 256;
    } elsif ($machine eq "x86_64") {
        $SYS_epoll_create = 213;
        $SYS_epoll_ctl    = 233;
        $SYS_epoll_wait   = 232;
    } elsif ($machine eq "ppc64") {
        $SYS_epoll_create = 236;
        $SYS_epoll_ctl    = 237;
        $SYS_epoll_wait   = 238;
        $u64_mod_8        = 1;
    } elsif ($machine eq "ppc") {
        $SYS_epoll_create = 236;
        $SYS_epoll_ctl    = 237;
        $SYS_epoll_wait   = 238;
        $u64_mod_8        = 1;
    } elsif ($machine eq "ia64") {
        $SYS_epoll_create = 1243;
        $SYS_epoll_ctl    = 1244;
        $SYS_epoll_wait   = 1245;
        $u64_mod_8        = 1;
    }

    if ($u64_mod_8) {
        *epoll_wait = \&epoll_wait_mod8;
        *epoll_ctl = \&epoll_ctl_mod8;
    } else {
        *epoll_wait = \&epoll_wait_mod4;
        *epoll_ctl = \&epoll_ctl_mod4;
    }

    # if syscall numbers have been defined (and this module has been
    # tested on) the arch above, then try to use it.  try means see if
    # the syscall is implemented.  it may well be that this is Linux
    # 2.4 and we don't even have it available.
    $TryEpoll = 1 if $SYS_epoll_create;
}

# epoll_create wrapper
# ARGS: (size)
sub epoll_create {
    my $epfd = eval { syscall($SYS_epoll_create, $_[0]) };
    return -1 if $@;
    return $epfd;
}

# epoll_ctl wrapper
# ARGS: (epfd, op, fd, events_mask)
sub epoll_ctl_mod4 {
    syscall($SYS_epoll_ctl, $_[0]+0, $_[1]+0, $_[2]+0, pack("LLL", $_[3], $_[2], 0));
}
sub epoll_ctl_mod8 {
    syscall($SYS_epoll_ctl, $_[0]+0, $_[1]+0, $_[2]+0, pack("LLLL", $_[3], 0, $_[2], 0));
}

# epoll_wait wrapper
# ARGS: (epfd, maxevents, timeout (milliseconds), arrayref)
#  arrayref: values modified to be [$fd, $event]
our $epoll_wait_events;
our $epoll_wait_size = 0;
sub epoll_wait_mod4 {
    # resize our static buffer if requested size is bigger than we've ever done
    if ($_[1] > $epoll_wait_size) {
        $epoll_wait_size = $_[1];
        $epoll_wait_events = "\0" x 12 x $epoll_wait_size;
    }
    my $ct = syscall($SYS_epoll_wait, $_[0]+0, $epoll_wait_events, $_[1]+0, $_[2]+0);
    for ($_ = 0; $_ < $ct; $_++) {
        @{$_[3]->[$_]}[1,0] = unpack("LL", substr($epoll_wait_events, 12*$_, 8));
    }
    return $ct;
}

sub epoll_wait_mod8 {
    # resize our static buffer if requested size is bigger than we've ever done
    if ($_[1] > $epoll_wait_size) {
        $epoll_wait_size = $_[1];
        $epoll_wait_events = "\0" x 16 x $epoll_wait_size;
    }
    my $ct = syscall($SYS_epoll_wait, $_[0]+0, $epoll_wait_events, $_[1]+0, $_[2]+0);
    for ($_ = 0; $_ < $ct; $_++) {
        # 16 byte epoll_event structs, with format:
        #    4 byte mask [idx 1]
        #    4 byte padding (we put it into idx 2, useless)
        #    8 byte data (first 4 bytes are fd, into idx 0)
        @{$_[3]->[$_]}[1,2,0] = unpack("LLL", substr($epoll_wait_events, 16*$_, 12));
    }
    return $ct;
}

1;


# Local Variables:
# mode: perl
# c-basic-indent: 4
# indent-tabs-mode: nil
# End: