########################################################################### =head1 NAME Danga::Socket - Event-driven async IO class =head1 SYNOPSIS use base ('Danga::Socket'); =head1 DESCRIPTION This is an abstract base class which provides the basic framework for event-driven asynchronous IO. =cut ########################################################################### package Danga::Socket; use strict; use vars qw{$VERSION}; $VERSION = do { my @r = (q$Revision: 1.4 $ =~ /\d+/g); sprintf "%d."."%02d" x $#r, @r }; use fields qw(sock fd write_buf write_buf_offset write_buf_size read_push_back post_loop_callback peer_ip closed event_watch debug_level); use Errno qw(EINPROGRESS EWOULDBLOCK EISCONN EPIPE EAGAIN EBADF ECONNRESET); use Socket qw(IPPROTO_TCP); use Carp qw{croak confess}; use POSIX (); use constant TCP_CORK => 3; # FIXME: not hard-coded (Linux-specific too) use constant DebugLevel => 0; # for epoll definitions: our $HAVE_SYSCALL_PH = eval { require 'syscall.ph'; 1 } || eval { require 'sys/syscall.ph'; 1 }; our $HAVE_KQUEUE = eval { require IO::KQueue; 1 }; # Explicitly define the poll constants, as either one set or the other won't be # loaded. They're also badly implemented in IO::Epoll: # The IO::Epoll module is buggy in that it doesn't export constants efficiently # (at least as of 0.01), so doing constants ourselves saves 13% of the user CPU # time use constant EPOLLIN => 1; use constant EPOLLOUT => 4; use constant EPOLLERR => 8; use constant EPOLLHUP => 16; use constant EPOLL_CTL_ADD => 1; use constant EPOLL_CTL_DEL => 2; use constant EPOLL_CTL_MOD => 3; use constant POLLIN => 1; use constant POLLOUT => 4; use constant POLLERR => 8; use constant POLLHUP => 16; use constant POLLNVAL => 32; # keep track of active clients our ( $DoneInit, # if we've done the one-time module init yet $TryEpoll, # Whether epoll should be attempted to be used. $HaveEpoll, # Flag -- is epoll available? initially undefined. $HaveKQueue, %DescriptorMap, # fd (num) -> Danga::Socket object %PushBackSet, # fd (num) -> Danga::Socket (fds with pushed back read data) $Epoll, # Global epoll fd (for epoll mode only) $KQueue, # Global kqueue fd (for kqueue mode only) @ToClose, # sockets to close when event loop is done %OtherFds, # A hash of "other" (non-Danga::Socket) file # descriptors for the event loop to track. $PostLoopCallback, # subref to call at the end of each loop, if defined %PLCMap, # fd (num) -> PostLoopCallback @Timers, # timers ); Reset(); ##################################################################### ### C L A S S M E T H O D S ##################################################################### ### (CLASS) METHOD: Reset() ### Reset all state sub Reset { %DescriptorMap = (); %PushBackSet = (); @ToClose = (); %OtherFds = (); $PostLoopCallback = undef; %PLCMap = (); @Timers = (); } ### (CLASS) METHOD: HaveEpoll() ### Returns a true value if this class will use IO::Epoll for async IO. sub HaveEpoll { $HaveEpoll }; ### (CLASS) METHOD: WatchedSockets() ### Returns the number of file descriptors which are registered with the global ### poll object. sub WatchedSockets { return scalar keys %DescriptorMap; } *watched_sockets = *WatchedSockets; ### (CLASS) METHOD: ToClose() ### Return the list of sockets that are awaiting close() at the end of the ### current event loop. sub ToClose { return @ToClose; } ### (CLASS) METHOD: OtherFds( [%fdmap] ) ### Get/set the hash of file descriptors that need processing in parallel with ### the registered Danga::Socket objects. sub OtherFds { my $class = shift; if ( @_ ) { %OtherFds = (%OtherFds, @_) } return wantarray ? %OtherFds : \%OtherFds; } sub AddTimer { my $class = shift; my ($secs, $coderef) = @_; my $timeout = time + $secs; if (!@Timers || ($timeout >= $Timers[-1][0])) { push @Timers, [$timeout, $coderef]; return; } # Now where do we insert... for (my $i = 0; $i < @Timers; $i++) { if ($Timers[$i][0] > $timeout) { splice(@Timers, $i, 0, [$timeout, $coderef]); return; } } die "Shouldn't get here spank matt."; } ### (CLASS) METHOD: DescriptorMap() ### Get the hash of Danga::Socket objects keyed by the file descriptor they are ### wrapping. sub DescriptorMap { return wantarray ? %DescriptorMap : \%DescriptorMap; } *descriptor_map = *DescriptorMap; *get_sock_ref = *DescriptorMap; sub init_poller { return if $DoneInit; $DoneInit = 1; if ($HAVE_KQUEUE) { $KQueue = IO::KQueue->new(); $HaveKQueue = $KQueue >= 0; if ($HaveKQueue) { *EventLoop = *KQueueEventLoop; } } elsif ($TryEpoll) { $Epoll = eval { epoll_create(1024); }; $HaveEpoll = defined $Epoll && $Epoll >= 0; if ($HaveEpoll) { *EventLoop = *EpollEventLoop; } } if (!$HaveEpoll && !$HaveKQueue) { require IO::Poll; *EventLoop = *PollEventLoop; } } ### FUNCTION: EventLoop() ### Start processing IO events. sub EventLoop { my $class = shift; init_poller(); if ($HaveEpoll) { EpollEventLoop($class); } elsif ($HaveKQueue) { KQueueEventLoop($class); } else { PollEventLoop($class); } } ### The kqueue-based event loop. Gets installed as EventLoop if IO::KQueue works ### okay. sub KQueueEventLoop { my $class = shift; foreach my $fd (keys %OtherFds) { $KQueue->EV_SET($fd, IO::KQueue::EVFILT_READ(), IO::KQueue::EV_ADD()); } while (1) { my $now = time; # Run expired timers while (@Timers && $Timers[0][0] <= $now) { my $to_run = shift(@Timers); $to_run->[1]->($now); } # Get next timeout my $timeout = @Timers ? ($Timers[0][0] - $now) : 1; # print STDERR "kevent($timeout)\n"; my @ret = $KQueue->kevent($timeout * 1000); foreach my $kev (@ret) { my ($fd, $filter, $flags, $fflags) = @$kev; my Danga::Socket $pob = $DescriptorMap{$fd}; # prioritise OtherFds first - likely to be accept() socks (?) if (!$pob) { if (my $code = $OtherFds{$fd}) { $code->($filter); } else { print STDERR "kevent() returned fd $fd for which we have no mapping. removing.\n"; POSIX::close($fd); # close deletes the kevent entry } next; } DebugLevel >= 1 && $class->DebugMsg("Event: fd=%d (%s), flags=%d \@ %s\n", $fd, ref($pob), $flags, time); $pob->event_read if $filter == IO::KQueue::EVFILT_READ() && !$pob->{closed}; $pob->event_write if $filter == IO::KQueue::EVFILT_WRITE() && !$pob->{closed}; if ($flags == IO::KQueue::EV_EOF() && !$pob->{closed}) { if ($fflags) { $pob->event_err; } else { $pob->event_hup; } } } return unless PostEventLoop(); } exit(0); } ### The epoll-based event loop. Gets installed as EventLoop if IO::Epoll loads ### okay. sub EpollEventLoop { my $class = shift; foreach my $fd ( keys %OtherFds ) { epoll_ctl($Epoll, EPOLL_CTL_ADD, $fd, EPOLLIN); } while (1) { my $now = time; # Run expired timers while (@Timers && $Timers[0][0] <= $now) { my $to_run = shift(@Timers); $to_run->[1]->($now); } # Get next timeout my $timeout = @Timers ? ($Timers[0][0] - $now) : 1; my @events; my $i; my $evcount = epoll_wait($Epoll, 1000, $timeout * 1000, \@events); EVENT: for ($i=0; $i<$evcount; $i++) { my $ev = $events[$i]; # it's possible epoll_wait returned many events, including some at the end # that ones in the front triggered unregister-interest actions. if we # can't find the %sock entry, it's because we're no longer interested # in that event. my Danga::Socket $pob = $DescriptorMap{$ev->[0]}; my $code; my $state = $ev->[1]; # if we didn't find a Perlbal::Socket subclass for that fd, try other # pseudo-registered (above) fds. if (! $pob) { if (my $code = $OtherFds{$ev->[0]}) { $code->($state); } else { my $fd = $ev->[0]; print STDERR "epoll() returned fd $fd w/ state $state for which we have no mapping. removing.\n"; POSIX::close($fd); epoll_ctl($Epoll, EPOLL_CTL_DEL, $fd, 0); } next; } DebugLevel >= 1 && $class->DebugMsg("Event: fd=%d (%s), state=%d \@ %s\n", $ev->[0], ref($pob), $ev->[1], time); $pob->event_read if $state & EPOLLIN && ! $pob->{closed}; $pob->event_write if $state & EPOLLOUT && ! $pob->{closed}; $pob->event_err if $state & EPOLLERR && ! $pob->{closed}; $pob->event_hup if $state & EPOLLHUP && ! $pob->{closed}; } return unless PostEventLoop(); } exit 0; } ### The fallback IO::Poll-based event loop. Gets installed as EventLoop if ### IO::Epoll fails to load. sub PollEventLoop { my $class = shift; my Danga::Socket $pob; while (1) { my $now = time; # Run expired timers while (@Timers && $Timers[0][0] <= $now) { my $to_run = shift(@Timers); $to_run->[1]->($now); } # Get next timeout my $timeout = @Timers ? ($Timers[0][0] - $now) : 1; # the following sets up @poll as a series of ($poll,$event_mask) # items, then uses IO::Poll::_poll, implemented in XS, which # modifies the array in place with the even elements being # replaced with the event masks that occured. my @poll; foreach my $fd ( keys %OtherFds ) { push @poll, $fd, POLLIN; } foreach my $fd ( keys %DescriptorMap ) { my Danga::Socket $sock = $DescriptorMap{$fd}; push @poll, $fd, $sock->{event_watch}; } return 0 unless @poll; # print STDERR "Poll for $timeout secs\n"; my $count = IO::Poll::_poll($timeout * 1000, @poll); # Fetch handles with read events while (@poll) { my ($fd, $state) = splice(@poll, 0, 2); next unless $state; $pob = $DescriptorMap{$fd}; if ( !$pob && (my $code = $OtherFds{$fd}) ) { $code->($state); next; } $pob->event_read if $state & POLLIN && ! $pob->{closed}; $pob->event_write if $state & POLLOUT && ! $pob->{closed}; $pob->event_err if $state & POLLERR && ! $pob->{closed}; $pob->event_hup if $state & POLLHUP && ! $pob->{closed}; } return unless PostEventLoop(); } exit 0; } ## PostEventLoop is called at the end of the event loop to process things # like close() calls. sub PostEventLoop { # fire read events for objects with pushed-back read data my $loop = 1; while ($loop) { $loop = 0; foreach my $fd (keys %PushBackSet) { my Danga::Socket $pob = $PushBackSet{$fd}; next unless (! $pob->{closed} && $pob->{event_watch} & POLLIN); $loop = 1; $pob->event_read; } } # now we can close sockets that wanted to close during our event processing. # (we didn't want to close them during the loop, as we didn't want fd numbers # being reused and confused during the event loop) foreach my $f (@ToClose) { close($f); } @ToClose = (); # now we're at the very end, call per-connection callbacks if defined my $ret = 1; # use $ret so's to not starve some FDs; return 0 if any PLCs return 0 for my $plc (values %PLCMap) { $ret &&= $plc->(\%DescriptorMap, \%OtherFds); } # now we're at the very end, call global callback if defined if (defined $PostLoopCallback) { $ret &&= $PostLoopCallback->(\%DescriptorMap, \%OtherFds); } return $ret; } ### (CLASS) METHOD: DebugMsg( $format, @args ) ### Print the debugging message specified by the C<sprintf>-style I<format> and ### I<args> sub DebugMsg { my ( $class, $fmt, @args ) = @_; chomp $fmt; printf STDERR ">>> $fmt\n", @args; } ### METHOD: new( $socket ) ### Create a new Danga::Socket object for the given I<socket> which will react ### to events on it during the C<wait_loop>. sub new { my Danga::Socket $self = shift; $self = fields::new($self) unless ref $self; my $sock = shift; $self->{sock} = $sock; my $fd = fileno($sock); $self->{fd} = $fd; $self->{write_buf} = []; $self->{write_buf_offset} = 0; $self->{write_buf_size} = 0; $self->{closed} = 0; $self->{read_push_back} = []; $self->{post_loop_callback} = undef; $self->{event_watch} = POLLERR|POLLHUP|POLLNVAL; init_poller(); if ($HaveEpoll) { epoll_ctl($Epoll, EPOLL_CTL_ADD, $fd, $self->{event_watch}) and die "couldn't add epoll watch for $fd\n"; } elsif ($HaveKQueue) { # Add them to the queue but disabled for now $KQueue->EV_SET($fd, IO::KQueue::EVFILT_READ(), IO::KQueue::EV_ADD() | IO::KQueue::EV_DISABLE()); $KQueue->EV_SET($fd, IO::KQueue::EVFILT_WRITE(), IO::KQueue::EV_ADD() | IO::KQueue::EV_DISABLE()); } $DescriptorMap{$fd} = $self; return $self; } ##################################################################### ### I N S T A N C E M E T H O D S ##################################################################### ### METHOD: tcp_cork( $boolean ) ### Turn TCP_CORK on or off depending on the value of I<boolean>. sub tcp_cork { my Danga::Socket $self = shift; my $val = shift; # FIXME: Linux-specific. setsockopt($self->{sock}, IPPROTO_TCP, TCP_CORK, pack("l", $val ? 1 : 0)) || die "setsockopt: $!"; } ### METHOD: close( [$reason] ) ### Close the socket. The I<reason> argument will be used in debugging messages. sub close { my Danga::Socket $self = shift; my $reason = shift || ""; my $fd = $self->{fd}; my $sock = $self->{sock}; $self->{closed} = 1; # we need to flush our write buffer, as there may # be self-referential closures (sub { $client->close }) # preventing the object from being destroyed $self->{write_buf} = []; if (DebugLevel) { my ($pkg, $filename, $line) = caller; print STDERR "Closing \#$fd due to $pkg/$filename/$line ($reason)\n"; } if ($HaveEpoll) { if (epoll_ctl($Epoll, EPOLL_CTL_DEL, $fd, $self->{event_watch}) == 0) { DebugLevel >= 1 && $self->debugmsg("Client %d disconnected.\n", $fd); } else { DebugLevel >= 1 && $self->debugmsg("poll->remove failed on fd %d\n", $fd); } } delete $PLCMap{$fd}; delete $DescriptorMap{$fd}; delete $PushBackSet{$fd}; # defer closing the actual socket until the event loop is done # processing this round of events. (otherwise we might reuse fds) push @ToClose, $sock; return 0; } ### METHOD: sock() ### Returns the underlying IO::Handle for the object. sub sock { my Danga::Socket $self = shift; return $self->{sock}; } ### METHOD: write( $data ) ### Write the specified data to the underlying handle. I<data> may be scalar, ### scalar ref, code ref (to run when there), or undef just to kick-start. ### Returns 1 if writes all went through, or 0 if there are writes in queue. If ### it returns 1, caller should stop waiting for 'writable' events) sub write { my Danga::Socket $self; my $data; ($self, $data) = @_; # nobody should be writing to closed sockets, but caller code can # do two writes within an event, have the first fail and # disconnect the other side (whose destructor then closes the # calling object, but it's still in a method), and then the # now-dead object does its second write. that is this case. we # just lie and say it worked. it'll be dead soon and won't be # hurt by this lie. return 1 if $self->{closed}; my $bref; # just queue data if there's already a wait my $need_queue; if (defined $data) { $bref = ref $data ? $data : \$data; if ($self->{write_buf_size}) { push @{$self->{write_buf}}, $bref; $self->{write_buf_size} += ref $bref eq "SCALAR" ? length($$bref) : 1; return 0; } # this flag says we're bypassing the queue system, knowing we're the # only outstanding write, and hoping we don't ever need to use it. # if so later, though, we'll need to queue $need_queue = 1; } WRITE: while (1) { return 1 unless $bref ||= $self->{write_buf}[0]; my $len; eval { $len = length($$bref); # this will die if $bref is a code ref, caught below }; if ($@) { if (ref $bref eq "CODE") { unless ($need_queue) { $self->{write_buf_size}--; # code refs are worth 1 shift @{$self->{write_buf}}; } $bref->(); undef $bref; next WRITE; } die "Write error: $@ <$bref>"; } my $to_write = $len - $self->{write_buf_offset}; my $written = syswrite($self->{sock}, $$bref, $to_write, $self->{write_buf_offset}); if (! defined $written) { if ($! == EPIPE) { return $self->close("EPIPE"); } elsif ($! == EAGAIN) { # since connection has stuff to write, it should now be # interested in pending writes: if ($need_queue) { push @{$self->{write_buf}}, $bref; $self->{write_buf_size} += $len; } $self->watch_write(1); return 0; } elsif ($! == ECONNRESET) { return $self->close("ECONNRESET"); } DebugLevel >= 1 && $self->debugmsg("Closing connection ($self) due to write error: $!\n"); return $self->close("write_error"); } elsif ($written != $to_write) { DebugLevel >= 2 && $self->debugmsg("Wrote PARTIAL %d bytes to %d", $written, $self->{fd}); if ($need_queue) { push @{$self->{write_buf}}, $bref; $self->{write_buf_size} += $len; } # since connection has stuff to write, it should now be # interested in pending writes: $self->{write_buf_offset} += $written; $self->{write_buf_size} -= $written; $self->watch_write(1); return 0; } elsif ($written == $to_write) { DebugLevel >= 2 && $self->debugmsg("Wrote ALL %d bytes to %d (nq=%d)", $written, $self->{fd}, $need_queue); $self->{write_buf_offset} = 0; # this was our only write, so we can return immediately # since we avoided incrementing the buffer size or # putting it in the buffer. we also know there # can't be anything else to write. return 1 if $need_queue; $self->{write_buf_size} -= $written; shift @{$self->{write_buf}}; undef $bref; next WRITE; } } } ### METHOD: push_back_read( $buf ) ### Push back I<buf> (a scalar or scalarref) into the read stream sub push_back_read { my Danga::Socket $self = shift; my $buf = shift; push @{$self->{read_push_back}}, ref $buf ? $buf : \$buf; $PushBackSet{$self->{fd}} = $self; } ### METHOD: shift_back_read( $buf ) ### Shift back I<buf> (a scalar or scalarref) into the read stream ### Use this instead of push_back_read() when you need to unread ### something you just read. sub shift_back_read { my Danga::Socket $self = shift; my $buf = shift; unshift @{$self->{read_push_back}}, ref $buf ? $buf : \$buf; $PushBackSet{$self->{fd}} = $self; } ### METHOD: read( $bytecount ) ### Read at most I<bytecount> bytes from the underlying handle; returns scalar ### ref on read, or undef on connection closed. sub read { my Danga::Socket $self = shift; my $bytes = shift; my $buf; my $sock = $self->{sock}; if (@{$self->{read_push_back}}) { $buf = shift @{$self->{read_push_back}}; my $len = length($$buf); if ($len <= $buf) { unless (@{$self->{read_push_back}}) { delete $PushBackSet{$self->{fd}}; } return $buf; } else { # if the pushed back read is too big, we have to split it my $overflow = substr($$buf, $bytes); $buf = substr($$buf, 0, $bytes); unshift @{$self->{read_push_back}}, \$overflow, return \$buf; } } my $res = sysread($sock, $buf, $bytes, 0); DebugLevel >= 2 && $self->debugmsg("sysread = %d; \$! = %d", $res, $!); if (! $res && $! != EWOULDBLOCK) { # catches 0=conn closed or undef=error DebugLevel >= 2 && $self->debugmsg("Fd \#%d read hit the end of the road.", $self->{fd}); return undef; } return \$buf; } ### (VIRTUAL) METHOD: event_read() ### Readable event handler. Concrete deriviatives of Danga::Socket should ### provide an implementation of this. The default implementation will die if ### called. sub event_read { die "Base class event_read called for $_[0]\n"; } ### (VIRTUAL) METHOD: event_err() ### Error event handler. Concrete deriviatives of Danga::Socket should ### provide an implementation of this. The default implementation will die if ### called. sub event_err { die "Base class event_err called for $_[0]\n"; } ### (VIRTUAL) METHOD: event_hup() ### 'Hangup' event handler. Concrete deriviatives of Danga::Socket should ### provide an implementation of this. The default implementation will die if ### called. sub event_hup { die "Base class event_hup called for $_[0]\n"; } ### METHOD: event_write() ### Writable event handler. Concrete deriviatives of Danga::Socket may wish to ### provide an implementation of this. The default implementation calls ### C<write()> with an C<undef>. sub event_write { my $self = shift; $self->write(undef); } ### METHOD: watch_read( $boolean ) ### Turn 'readable' event notification on or off. sub watch_read { my Danga::Socket $self = shift; return if $self->{closed}; my $val = shift; my $event = $self->{event_watch}; $event &= ~POLLIN if ! $val; $event |= POLLIN if $val; # If it changed, set it if ($event != $self->{event_watch}) { if ($HaveKQueue) { $KQueue->EV_SET($self->{fd}, IO::KQueue::EVFILT_READ(), $val ? IO::KQueue::EV_ENABLE() : IO::KQueue::EV_DISABLE()); } elsif ($HaveEpoll) { epoll_ctl($Epoll, EPOLL_CTL_MOD, $self->{fd}, $event) and print STDERR "couldn't modify epoll settings for $self->{fd} " . "($self) from $self->{event_watch} -> $event\n"; } $self->{event_watch} = $event; } } ### METHOD: watch_read( $boolean ) ### Turn 'writable' event notification on or off. sub watch_write { my Danga::Socket $self = shift; return if $self->{closed}; my $val = shift; my $event = $self->{event_watch}; $event &= ~POLLOUT if ! $val; $event |= POLLOUT if $val; # If it changed, set it if ($event != $self->{event_watch}) { if ($HaveKQueue) { $KQueue->EV_SET($self->{fd}, IO::KQueue::EVFILT_WRITE(), $val ? IO::KQueue::EV_ENABLE() : IO::KQueue::EV_DISABLE()); } elsif ($HaveEpoll) { epoll_ctl($Epoll, EPOLL_CTL_MOD, $self->{fd}, $event) and print STDERR "couldn't modify epoll settings for $self->{fd} " . "($self) from $self->{event_watch} -> $event\n"; } $self->{event_watch} = $event; } } ### METHOD: debugmsg( $format, @args ) ### Print the debugging message specified by the C<sprintf>-style I<format> and ### I<args> if the object's C<debug_level> is greater than or equal to the given ### I<level>. sub debugmsg { my ( $self, $fmt, @args ) = @_; confess "Not an object" unless ref $self; chomp $fmt; printf STDERR ">>> $fmt\n", @args; } ### METHOD: peer_ip_string() ### Returns the string describing the peer's IP sub peer_ip_string { my Danga::Socket $self = shift; return $self->{peer_ip} if defined $self->{peer_ip}; my $pn = getpeername($self->{sock}) or return undef; my ($port, $iaddr) = Socket::sockaddr_in($pn); my $r = Socket::inet_ntoa($iaddr); $self->{peer_ip} = $r; return $r; } ### METHOD: peer_addr_string() ### Returns the string describing the peer for the socket which underlies this ### object in form "ip:port" sub peer_addr_string { my Danga::Socket $self = shift; my $pn = getpeername($self->{sock}) or return undef; my ($port, $iaddr) = Socket::sockaddr_in($pn); return Socket::inet_ntoa($iaddr) . ":$port"; } ### METHOD: as_string() ### Returns a string describing this socket. sub as_string { my Danga::Socket $self = shift; my $ret = ref($self) . ": " . ($self->{closed} ? "closed" : "open"); my $peer = $self->peer_addr_string; if ($peer) { $ret .= " to " . $self->peer_addr_string; } return $ret; } ### CLASS METHOD: SetPostLoopCallback ### Sets post loop callback function. Pass a subref and it will be ### called every time the event loop finishes. Return 1 from the sub ### to make the loop continue, else it will exit. The function will ### be passed two parameters: \%DescriptorMap, \%OtherFds. sub SetPostLoopCallback { my ($class, $ref) = @_; if(ref $class) { my Danga::Socket $self = $class; if( defined $ref && ref $ref eq 'CODE' ) { $PLCMap{$self->{fd}} = $ref; } else { delete $PLCMap{$self->{fd}}; } } else { $PostLoopCallback = (defined $ref && ref $ref eq 'CODE') ? $ref : undef; } } sub DESTROY { my Danga::Socket $self = shift; $self->close() if !$self->{closed}; } ##################################################################### ### U T I L I T Y F U N C T I O N S ##################################################################### our ($SYS_epoll_create, $SYS_epoll_ctl, $SYS_epoll_wait); if ($^O eq "linux") { my ($sysname, $nodename, $release, $version, $machine) = POSIX::uname(); # whether the machine requires 64-bit numbers to be on 8-byte # boundaries. my $u64_mod_8 = 0; if ($machine =~ m/^i[3456]86$/) { $SYS_epoll_create = 254; $SYS_epoll_ctl = 255; $SYS_epoll_wait = 256; } elsif ($machine eq "x86_64") { $SYS_epoll_create = 213; $SYS_epoll_ctl = 233; $SYS_epoll_wait = 232; } elsif ($machine eq "ppc64") { $SYS_epoll_create = 236; $SYS_epoll_ctl = 237; $SYS_epoll_wait = 238; $u64_mod_8 = 1; } elsif ($machine eq "ppc") { $SYS_epoll_create = 236; $SYS_epoll_ctl = 237; $SYS_epoll_wait = 238; $u64_mod_8 = 1; } elsif ($machine eq "ia64") { $SYS_epoll_create = 1243; $SYS_epoll_ctl = 1244; $SYS_epoll_wait = 1245; $u64_mod_8 = 1; } if ($u64_mod_8) { *epoll_wait = \&epoll_wait_mod8; *epoll_ctl = \&epoll_ctl_mod8; } else { *epoll_wait = \&epoll_wait_mod4; *epoll_ctl = \&epoll_ctl_mod4; } # if syscall numbers have been defined (and this module has been # tested on) the arch above, then try to use it. try means see if # the syscall is implemented. it may well be that this is Linux # 2.4 and we don't even have it available. $TryEpoll = 1 if $SYS_epoll_create; } # epoll_create wrapper # ARGS: (size) sub epoll_create { my $epfd = eval { syscall($SYS_epoll_create, $_[0]) }; return -1 if $@; return $epfd; } # epoll_ctl wrapper # ARGS: (epfd, op, fd, events_mask) sub epoll_ctl_mod4 { syscall($SYS_epoll_ctl, $_[0]+0, $_[1]+0, $_[2]+0, pack("LLL", $_[3], $_[2], 0)); } sub epoll_ctl_mod8 { syscall($SYS_epoll_ctl, $_[0]+0, $_[1]+0, $_[2]+0, pack("LLLL", $_[3], 0, $_[2], 0)); } # epoll_wait wrapper # ARGS: (epfd, maxevents, timeout (milliseconds), arrayref) # arrayref: values modified to be [$fd, $event] our $epoll_wait_events; our $epoll_wait_size = 0; sub epoll_wait_mod4 { # resize our static buffer if requested size is bigger than we've ever done if ($_[1] > $epoll_wait_size) { $epoll_wait_size = $_[1]; $epoll_wait_events = "\0" x 12 x $epoll_wait_size; } my $ct = syscall($SYS_epoll_wait, $_[0]+0, $epoll_wait_events, $_[1]+0, $_[2]+0); for ($_ = 0; $_ < $ct; $_++) { @{$_[3]->[$_]}[1,0] = unpack("LL", substr($epoll_wait_events, 12*$_, 8)); } return $ct; } sub epoll_wait_mod8 { # resize our static buffer if requested size is bigger than we've ever done if ($_[1] > $epoll_wait_size) { $epoll_wait_size = $_[1]; $epoll_wait_events = "\0" x 16 x $epoll_wait_size; } my $ct = syscall($SYS_epoll_wait, $_[0]+0, $epoll_wait_events, $_[1]+0, $_[2]+0); for ($_ = 0; $_ < $ct; $_++) { # 16 byte epoll_event structs, with format: # 4 byte mask [idx 1] # 4 byte padding (we put it into idx 2, useless) # 8 byte data (first 4 bytes are fd, into idx 0) @{$_[3]->[$_]}[1,2,0] = unpack("LLL", substr($epoll_wait_events, 16*$_, 12)); } return $ct; } 1; # Local Variables: # mode: perl # c-basic-indent: 4 # indent-tabs-mode: nil # End: